Using Discrete Variable Representation and Toeplitz Matrices
نویسندگان
چکیده
A direct and exact method for calculating the density of states for systems with localized potentials is presented. The method is based on explicit inversion of the operator E−H. The operator is written in the discrete variable representation of the Hamiltonian, and the Toeplitz property of the asymptotic part of the obtained infinite matrix is used. Thus, the problem is reduced to the inversion of a finite matrix.
منابع مشابه
An application of Fibonacci numbers into infinite Toeplitz matrices
The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p
متن کاملLocalization of the Eigenvalues of Toeplitz
This paper explores the relationship between Toeplitz and circulant matrices. Upper and lower bounds for all eigenvalues of hermitian Toeplitz matrices are given, capitalizing on the possibility of embedding a Toeplitz matrix in a circulant, and of expressing any nn Toeplitz matrix as a sum of two matrices with known eigenvalues. The bounds can be simultaneously found using a single discrete Fo...
متن کاملTransformation Techniques for Toeplitz and Toeplitz-plus-hankel Matrices Part I. Transformations
Transformations of the form A ! C 1 AC 2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. C 1 and C 2 are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques,in part II algorithmsfor Toeplitz and Toeplitz-plus-Hankel systems will be p...
متن کاملTransformation Techniques for Toeplitz and Toeplitz-plus-Hankel Matrices. I. Transformations
Transformations of the form A + E’FAg2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. ‘Zi and @a are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques, in paper II algorithms for Toeplitz and Toeplitz-plus-Hankel systems will be p...
متن کاملA Fast Algorithm for Deblurring Models with Neumann Boundary Conditions
Blur removal is an important problem in signal and image processing. The blurring matrices obtained by using the zero boundary condition (corresponding to assuming dark background outside the scene) are Toeplitz matrices for one-dimensional problems and block-Toeplitz–Toeplitzblock matrices for two-dimensional cases. They are computationally intensive to invert especially in the block case. If ...
متن کامل